A method of nodose ganglia injection in Sprague-Dawley rat.

نویسندگان

  • Michael W Calik
  • Miodrag Radulovacki
  • David W Carley
چکیده

Afferent signaling via the vagus nerve transmits important general visceral information to the central nervous system from many diverse receptors located in the organs of the abdomen and thorax. The vagus nerve communicates information from stimuli such as heart rate, blood pressure, bronchopulmonary irritation, and gastrointestinal distension to the nucleus of solitary tract of the medulla. The cell bodies of the vagus nerve are located in the nodose and petrosal ganglia, of which the majority are located in the former. The nodose ganglia contain a wealth of receptors for amino acids, monoamines, neuropeptides, and other neurochemicals that can modify afferent vagus nerve activity. Modifying vagal afferents through systemic peripheral drug treatments targeted at the receptors on nodose ganglia has the potential of treating diseases such as sleep apnea, gastroesophageal reflux disease, or chronic cough. The protocol here describes a method of injection neurochemicals directly into the nodose ganglion. Injecting neurochemicals directly into the nodose ganglia allows study of effects solely on cell bodies that modulate afferent nerve activity, and prevents the complication of involving the central nervous system as seen in systemic neurochemical treatment. Using readily available and inexpensive equipment, intranodose ganglia injections are easily done in anesthetized Sprague-Dawley rats.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cannabinoid Type 1 and Type 2 Receptor Antagonists Prevent Attenuation of Serotonin-Induced Reflex Apneas by Dronabinol in Sprague-Dawley Rats

The prevalence of obstructive sleep apnea (OSA) in Americans is 9% and increasing. Increased afferent vagal activation may predispose to OSA by reducing upper airway muscle activation/patency and disrupting respiratory rhythmogenesis. Vagal afferent neurons are inhibited by cannabinoid type 1 (CB1) or cannabinoid type 2 (CB2) receptors in animal models of vagally-mediated behaviors. Injections ...

متن کامل

Intranodose ganglion injections of dronabinol attenuate serotonin-induced apnea in Sprague-Dawley rat.

Obstructive sleep apnea represents a significant public health concern. Afferent vagal activation is implicated in increased apnea susceptibility by reducing upper airway muscle tone via activation of serotonin receptors in the nodose ganglia. Previous investigations demonstrated that systemically administered cannabinoids can be used therapeutically to decrease the apnea/hypopnea index in rats...

متن کامل

Receptor autoradiography with [3H]L-glutamate reveals the presence and axonal transport of glutamate receptors in vagal afferent neurones of the rat.

The perikarya of vagal afferent neurones are located within the inferior vagal (nodose) ganglia (Palkovits and Zaborsky, 1977). Recent evidence suggests that receptors for a variety of putative neurotransmitters/neuromodulators may be synthesized within these perikarya and then delivered by axonal transport mechanisms in the vagus nerve to their central and/or peripheral processes where they ar...

متن کامل

The Location of Extrinsic Afferent and Efferent Neurons Innervating The Stomach and Colon in Rat

153 Abstract: The location of extrinsic afferent and efferent neurons projecting to the rat gastrointestinal tract were mapped using the retrograde tracer, True Blue (TB). Injection of retrograde tracer, TB into stomach, proximal colon and distal colon resulted in labelled cells in the dorsal root ganglia. Cells were also labelled in the nodose ganglia following injection of tracer into stomach...

متن کامل

Neural Proliferation and Restoration of Neurochemical Phenotypes and Compromised Functions Following Capsaicin-Induced Neuronal Damage in the Nodose Ganglion of the Adult Rat

We previously reported that neuronal numbers within adult nodose ganglia (NG) were restored to normal levels 60 days following the capsaicin-induced destruction of nearly half of the neuronal population. However, the nature of this neuronal replacement is not known. Therefore, we aimed to characterize neural proliferation, neurochemical phenotypes, and functional recovery within adult rat NG ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of visualized experiments : JoVE

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2014